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Feedback controllers for the stabilization of the angular velocity vector of a rigid
spacecraft using a single-gimbal Variable Speed Control Moment Gyro (VSCMG) are
presented. Linearization of the equations of motion show that complete attitude stabi-
lization is not possible via linear methods. Nonetheless, it is shown that the linearized
angular velocity equations are controllable, and a simple LQR control law is used to
locally asymptotically stabilize the angular velocity vector. A Lyapunov-based approach
is subsequently used to derive a state feedback control law that globally asymptotically
stabilizes the nonlinear angular velocity system.

Introduction

Stabilization of the angular velocity equations of a
rigid spacecraft with less than three control torques
have been addressed in several papers using various
techniques. In Ref. 1 it was shown, via Lyapunov
methods, that the angular velocity equations can be
made locally asymptotically stable about the origin
by means of two torques applied along two principal
axes. The control law proposed in Ref. 1 was non-
linear. Reference 2 complemented these results by
showing asymptotic stability via the construction of
a center manifold. A new control law was proposed,
and the control law of Ref. 1 was verified. Refer-
ence 3 continued this avenue of research by showing
that one external torque, aligned with a principal axis,
could stabilize the angular velocity vector about the
origin. Moreover, it was shown that the controller was
robust relative to changes in the parameters defin-
ing the control law. In Ref. 4, global asymptotic
stability of the angular velocity was proved using a
single, linear control law, provided that the spacecraft
has no symmetries. It was also shown that a single
control torque aligned with a principal axis cannot
asymptotically stabilize the system. Reference 5 fur-
ther proved that a body with an axis of symmetry can
be globally asymptotically stabilized using one control
torque. The resulting control law must necessarily be
nonlinear. However, no controller was presented in
Ref. 5. Reference 6 verified that the results of Refs. 4
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and 5 follow easily as an application of the Jurdjevic-
Quinn approach. It also included an explicit nonlinear
control law which provided global stability for the axi-
symmetric case. Reference 7 showed that the angular
velocity of an axi-symmetric rigid body can be glob-
ally asymptotically stabilized by means of a linear
feedback when two control torques act on the body.
Other approaches used to develop globally asymp-
totically stabilizing controllers for a rigid spacecraft
with two torques include the general methodology of
nonlinear zero dynamics in Ref. 8, and the energy
techniques of Ref. 9. On the same token, the authors
of Ref. 10 addressed the angular velocity stabilization
of an almost axi-symmetric rigid spacecraft with par-
tial attitude stabilization using two external torques.
In the previously mentioned references, the con-

trol torques are assumed to be provided by gas jets.
Alternatively, internal torques can be generated by
momentum (or reaction) wheels or control moment
gyroscopes (CMGs). The spin axis of a momentum
wheel is fixed in the body frame, and the spin rate
of the flywheel is varied to produce a torque along
the spin axis. In the CMG case the wheel speed of
the flywheel is kept constant. A gimbal assembly
changes the spin axis of the flywheel, thus produc-
ing a torque which is orthogonal to both the spin and
gimbal axes of the CMG. It is well known that the
primary advantage of single-gimbal CMGs over other
momentum exchange devices is their torque amplifi-
cation property, that is, the output torque produced
from the rotation of the angular momentum vector is
much larger than the one required for gimbal rotation.
Several references discuss the use of CMGs for space-
craft attitude control. See, for example, Refs. 11–14.
A complete controllability analysis of the spacecraft

equations has been reported in Ref. 15. There, it is



shown that the system is not controllable with less
than three reaction wheels. Krishnan et al16 provided
a control law using two momentum wheels for the re-
stricted case of zero angular momentum. Reference 17
developed a control law to stabilize the spin axis of a
rigid spacecraft about a specified inertia axis using
two reaction wheels. Finally, the authors in Ref. 18
applied modern nonlinear control techniques for de-
tumbling of a spacecraft with a single momentum
wheel aligned along one of the spacecraft principal
axes.
The use of Variable Speed Control Moment Gyros

(VSCMGs) for spacecraft stabilization has received
attention recently.19,20 A VSCMG can be thought
of as a hybrid device comprised of a momentum (or
reaction) wheel and a CMG. In particular, the wheel
speed of a VSCMG is allowed to vary, thus produc-
ing an additional torque over a conventional CMG.
This torque is not fixed in the spacecraft body frame,
as in the case of a momentum wheel; rather, the di-
rection of the spin axis of the VSCMG is allowed to
rotate via a gimbal. An additional torque, perpendic-
ular to the spin and gimbal axes is thus generated, as
in the conventional CMG case. This additional degree
of freedom can be utilized to avoid the gimbal lock sin-
gularity that has plagued traditional CMG clusters.19

The use of the additional torque of VSCMGs has also
been utilized for attitude control (and energy storage)
of spacecraft in Refs. 19–21. In both the CMG and
VSCMG cases presented in the literature to date, a
cluster of actuators has been used to provide a suffi-
cient number of torques to achieve complete attitude
stabilization (and possibly energy storage). In this
paper, we consider the case of control (stabilization)
of a spacecraft via a single VSCMG actuator.
The outline of this paper is as follows. First, we

present the complete equations of motion of a space-
craft with one VSCMG in an arbitrary orientation.
These equations are composed of the dynamic and
kinematic equations. Next, we linearize the equations
of motion about an equilibrium point. Linearization
shows that the spacecraft attitude is uncontrollable
with only one VSCMG. However, the angular velocity
equations remain controllable. A simple LQR feed-
back law is designed to achieve local asymptotic sta-
bility at the origin of the linearized angular velocity
system. Next, we examine the exact angular veloc-
ity equations. We derive a nonlinear control law that
ensures global asymptotic stability of the angular ve-
locity of the spacecraft about the origin using only
one VSCMG. Several numerical examples are included
to demonstrate the viability of the control algorithms
proposed.

Equations of Motion
The dynamic equations of motion of a spacecraft

with a cluster of VSCMGs have been fully derived in
the literature.19–21 Herein, we will use the equations
as derived by Richie et al21 and Yoon and Tsiotras.20

In Ref. 20 it is assumed that the center of mass of
each VSCMG wheel coincides with that of the gimbal
structure; the spacecraft, wheels, and gimbal structure
are rigid; the flywheels and gimbals are balanced; and
the spacecraft rotational motion is decoupled from its
translational motion.
Figure 1 shows a spacecraft with a single VSCMG.

The origin of the body frame B, is located at the center
of mass of the entire spacecraft. The gimbal frame
G, represented by the orthonormal set of unit vectors
ês, êt and êg, is arbitrarily located in the spacecraft
platform.

O

Body Frame

êg
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êt

Fig. 1 Spacecraft with a single VSCMG

Dynamics in the body frame

Specializing the dynamical equations of motion pre-
sented in Yoon and Tsiotras20 to a single VSCMG, we
get

Jω̇+J̇ω+AgIcgγ̈+AtIwsΩγ̇+AsIwsΩ̇+ω×h = 0 (1)

where,

h := Jω +AgIcgγ̇ +AsIwsΩ (2)
J(γ) := IB

B +As(γ)IcsAT
s (γ) +At(γ)IctAT

t (γ)
+AgIcgA

T
g (3)

The argument in J(·) is included to denote explicitly
the dependence of the spacecraft inertia matrix on the
gimbal axis angle, γ. For notational simplicity, in the
sequel we will often drop the argument when it is clear
from the context. As a result of (3) it follows that

J̇ = γ̇At(Ics − Ict)AT
s + γ̇As(Ics − Ict)AT

t (4)

Notice that J̇ is linear in the gimbal rate. In (2)
the (column) vector h ∈ IR3, is the total angular mo-
mentum of the spacecraft with respect to the inertial



frame, expressed in the body frame. Similarly, ω ∈ IR3

is the angular velocity vector of the spacecraft with
respect to the inertial frame, expressed in the body
frame of the spacecraft. The quantities Ω, and Ω̇ are
the magnitudes of the angular velocity and angular ac-
celeration of the VSCMG wheel, respectively, about
the gimbal spin axis ês, with respect to the gimbal
frame. Also, γ̇ and γ̈ are the magnitudes of the gim-
bal rate and gimbal acceleration, respectively, about
the gimbal axis êg, with respect to the spacecraft plat-
form. In our analysis we will assume, as usual, gimbal
rate commands. This is also the case for standard
CMG’s in order to take full advantage of the torque
amplification property. This implies a velocity steer-
ing law for the gimbal. Thus, our control inputs are
Ω̇ and γ̇ and we can write

γ̇ = u1, Ω̇ = u2 (5)

Often we use u := [u1, u2]T ∈ IR2 for the combined
control vector.
The matrix-valued function J : [0, 2π) → IR3×3

provides the inertia matrix of the entire spacecraft,
i.e. the spacecraft platform, including the wheel and
gimbal structure of the VSCMG, given the gimbal
angle γ. Notice that the matrix J(γ) is positive def-
inite for all values of the gimbal angle γ ∈ [0, 2π).
The constant matrix IB

B is the sum of the inertia of
the spacecraft platform, and the inertias of the mass
centers of the wheel, gimbal and spacecraft platform,
about the equivalent mass center of the entire space-
craft. Ic� represents the sum of the inertia scalars of
the wheel and gimbal structure, i.e. Ic� = Iw� + Ig�,
where � = {s, t, g}.
The column vectors A� ∈ IR3, where � = {s, t, g}

are the body frame representations of the gimbal
frame unit vectors ês, êt, and êg. Observe that As

and At are functions of the gimbal angle γ, as follows

As(γ) = Asocγ +Atosγ (6a)
At(γ) = −Asosγ +Atocγ (6b)

where Aso and Ato are the values of As and At at some
initial time, and cγ := cos γ and sγ := sin γ.
Finally, for any vector v = [v1, v2 v3]T ∈ IR3, the

notation v× ∈ IR3×3 represents the skew symmetric
matrix

v× =


 0 −v3 v2
v3 0 −v1
−v2 v1 0


 .

For the details of the derivation of equations (1)-(3), as
well as the notation used in this paper, the interested
reader may refer to Ref. 20.

Kinematics

Without loss of generality, Euler angles will be used
to represent the attitude of the spacecraft. For a 3-

2-1 Euler angle sequence, the kinematic equations are
given by22

φ̇ = ω1 + ω2 sinφ tan θ + ω3 cosφ tan θ (7a)
θ̇ = ω2 cosφ− ω3 sinφ (7b)
ψ̇ = ω2 sinφ sec θ + ω3 cosφ sec θ (7c)

Linear System Analysis
In this section, we linearize the full nonlinear equa-

tions of motion, given by (1), (5) and (7), and examine
their controllability properties. We also present a lin-
ear control law which stabilizes the angular velocity
of the linearized system. The only mild assumption
made here is that the gimbal acceleration γ̈ is negligi-
ble.

Linearization

The equilibrium points of Eqs. (1), (5) and (7) are
given by ω = φ = θ = ψ = 0 and γ = γo, Ω =
Ωo, where γo and Ωo are arbitrary constants. From
equations (6) we get

As ≈ Asf(γo) +Atf(γo)
γ (8a)
At ≈ Atf(γo)−Asf(γo)
γ, (8b)

where

Asf(γo) := Asocγo
+Atosγo

, (9a)
Atf(γo) := −Asosγo

+Atocγo
, (9b)

and where 
(·) represents a small perturbation in the
variable from its equilibrium value. Similarly, each
term of Eq. (1) results, to first order, in the following
terms

Jω̇ ≈ Jf
ω̇ (10a)
J̇ω ≈ 0 (10b)

AtIwsΩγ̇ ≈ IwsΩoAtf
γ̇ (10c)
AsIwsΩ̇ ≈ IwsAsf
Ω̇ (10d)
ω×h ≈ −IwsΩoA

×
sf
ω (10e)

where Jf(γo) := IB
B +AsfIcsA

T
sf+AtfIctA

T
tf+AgIcgA

T
g .

The linearization of (1) thus yields


ω̇ = A1
ω +B1
γ̇ +B2
Ω̇ (11)

where the matrices A1 ∈ IR3×3, B1 ∈ IR3×1, and B2 ∈
IR3×1 are given by

A1(γo,Ωo) := J−1
f IwsΩoA

×
sf (12a)

B1(γo,Ωo) := −J−1
f IwsΩoAtf (12b)

B2(γo,Ωo) := −J−1
f IwsAsf (12c)

Note that these matrices depend on the equilib-
rium/reference values γo and Ωo. Defining the new



state variable as 
x := [
ωT ,
φ,
θ,
ψ]T ∈ IR6

and the control as 
u := [
γ̇,
Ω̇]T ∈ IR2, we can
express the linearized equations in the familiar form


ẋ = A
x+B
u (13)

where the matrices A ∈ IR6×6 and B ∈ IR6×2 are given
by

A :=
[
A1 03×3

13×3 03×3

]
, B :=

[
B1 B2

03×1 03×1

]
(14)

where 1 is the identity matrix.

Controllability of Linearized System

Here we give two results on the controllability of
the linearized complete system in Eqs. (13) and of
the linearized angular velocity equations in Eq. (16).

Proposition 1 The linearized system described by
Eqs. (13) and (14) is uncontrollable for any γo ∈
[0, 2π) and Ωo ∈ IR.
The result follows by showing that the controllabil-

ity matrix23

Co := [B AB A2B A3B A4B A5B] (15)

has rank five§ for all γo ∈ [0, 2π) and Ωo ∈ IR. Since
the state dimension is six, the pair (A,B) is uncon-
trollable. �
This result implies that it is not possible to use lin-

ear techniques to stabilize the complete attitude of the
spacecraft using a single VSCMG. It leaves, however,
open the possibility that the complete system of equa-
tions are controllable in the nonlinear sense.
In the sequel we restrict our attention to the angular

velocity subsystem. To this end, define Ã := A1 and
B̃ := [B1 B2], and rewrite Eq. (11) as


ω̇ = Ã
ω + B̃
u (16)

Linearizing the kinematic equations, we get


φ̇ = 
ω1, 
θ̇ = 
ω2, 
ψ̇ = 
ω3 (17)

Proposition 2 The linearized angular velocity sys-
tem of Eq. (16) is controllable for all γo ∈ [0, 2π),
and Ωo �= 0.
Proof. From Theorem 3.1 of Ref. 23, (Ã, B̃) is con-
trollable if the matrix [Ã − λ1 | B̃] has full row rank
for all λ ∈ IR. In particular, this must be true for all
the eigenvalues λi (i = 1, 2, 3) of the matrix Ã. Calcu-
lating the row-reduced echelon form of Ã, one obtains
that for λ = λi (i = 1, 2, 3) and Ωo �= 0,

[Ã− λ1 | B̃] =

 1 0 0 
 

0 1 0 
 

0 0 1 
 



 (18)

§The rank of the matrix Co was calculated using the Sym-
bolic Toolbox of MATLAB.24

where (
) are algebraic expressions in terms of the
components of Ã that do not affect the row rank of
the matrix. Since the rank of the above matrix is
always three, the linearized angular velocity system
of Eq. (11) is controllable for all γo ∈ [0, 2π), and
Ωo �= 0.
LQR Controller for the Angular Velocity
Subsystem

Given the controllable system in Eq. (16), we can
find a linear control law via LQR methods. For exam-
ple, we can determine a static full-state feedback law

u = −K
ω such that the performance cost

J =
∫ ∞

0

[
ωTQ
ω +
uTR
u] dt (19)

is minimized subject to the dynamics (16). The ma-
trix Q must be positive semi-definite while R must
be positive definite. The control gain matrix K is
given by K = R−1B̃TP . The matrix P = PT is pos-
itive semi-definite and satisfies the Algebraic Riccati
Equation ÃTP + PÃ − PB̃R−1B̃TP + Q = 0. LQR
optimal control designs is by now folklore. Details of
can be found, for instance, in Ref. 23.

Nonlinear System Analysis
The LQR controller of the previous section ensures

asymptotic stability only locally about the equilibrium
ω = 0 and for gimbal angles and wheel speeds close to
their reference values γo and Ωo, respectively. The last
restriction is particularly troublesome, since stabiliza-
tion of the angular velocity vector should not hinge
upon γ and Ω being close to γo and Ωo. As a matter
of fact, significant control authority may tend to pro-
duce large deviations of the gimbal angle and wheel
speed from their reference values; see Eqs. (5). In re-
alistic cases, it is not reasonable to expect that the
“states” γ and Ω (whose values are of no particular
interest, thus are not penalized in (19)) will remain
small. For a more comprehensive analysis of the sta-
bilization problem, it is therefore necessary to work
with the exact, nonlinear equations of motion.
In the sequel we improve on the previous results by

finding a control law that ensures global asymptotic
stability for the nonlinear system. We thus also avoid
the issue of the restricted (local) validity of the lin-
earized equations due to potentially large deviation of
the gimbal angle and wheel speed from their reference
values.
As in the linear case, in the sequel we assume that

the gimbal acceleration γ̈ is negligible, and the control
inputs are γ̇ and Ω̇. The dynamic equations of motion
are thus given by

Jω̇ + J̇ω +AtIwsΩγ̇ +AsIwsΩ̇ + ω×h = 0 (20)



where h and J are as in (2) and (3).
To derive a stabilizing control law for (20), we con-

sider the positive definite, continuously differentiable
Lyapunov function V (ω) := 1

2ω
TJω. The derivative

of V along the trajectories of the system is

V̇ (ω) = ωTJω̇ +
1
2
ωT J̇ω

= ωTJω̇ + ωT J̇ω − 1
2
ωT J̇ω

= ωT (Jω̇ + J̇ω)− 1
2
ωT J̇ω

= −ωT (AtIwsΩγ̇ +AsIwsΩ̇ + ω×h)− 1
2
ωT J̇ω

Rewriting J̇ = Φγ̇ where Φ := At(Ics − Ict)AT
s +

As(Ics − Ict)AT
t and using the fact that ωTω×h = 0

yields

V̇ (ω) = −ωTAtIwsΩγ̇ − 1
2
ωTΦωγ̇ − ωTAsIwsΩ̇

= −ωtIwsΩγ̇ − ωsωt(Ics − Ict)γ̇ − IwsωsΩ̇

where ωs = ωTAs and ωt = ωTAt are the components
of the body angular velocity vector �ω along the spin
and transverse axes of the gimbal frame, respectively,
i.e. �ω = ωsês + ωtêt + ωgêg.

Proposition 3 Consider the following control law

γ̇ = k1(Ω)ωt

(
Ω− ωs

(
Ics − Ict
Iws

))

Ω̇ = k2ωs + k3|ωt|k4(Ω) + k1(Ω)
(
Ics − Ict
Iws

)2

ω2
tωs

where k1 : R → IR+ is any function such that k1(Ω)Ω2

is bounded for all Ω ∈ IR, k4(Ω) := Ωk
1
2
1 (Ω), k2 > 0

and 2
√
k2 > k3 ≥ 0. This control law globally asymp-

totically stabilizes the system given by Eq. (20) for all
Ω(0) �= 0.

Proof. Substituting this control law in the expression
for V̇ (ω) leads to

V̇ (ω) = −ω2
tΩIwsk1(Ω)

(
Ω− ωs

(
Ics − Ict
Iws

))

−ωsω
2
t (Ics − Ict)k1(Ω)

(
Ω− ωs

(
Ics − Ict
Iws

))

−Iwsωs

(
k2ωs + k3|ωt|k4(Ω)

+ k1(Ω)
(
Ics − Ict
Iws

)2

ω2
tωs

)

= −ω2
t IwsΩ2k1(Ω)− k2Iwsω

2
s − k3Iwsωs|ωt|k4(Ω)

= −Iws

[
ωt ωs

]
G(Ω, ω, γ)

[
ωt

ωs

]

where the matrix G(Ω, ω, γ) is given by

G(Ω, ω, γ) :=
[

Ω2k1(Ω) k3
2 sgn(ωt)k4(Ω)

k3
2 sgn(ωt)k4(Ω) k2

]

It can be easily shown that G(Ω, ω, γ) ≥ 0 for all
(Ω, ω, γ) ∈ R

2 × [0, 2π) and G(Ω, ω, γ) > 0 for Ω �= 0.
It follows that V̇ ≤ 0. The last inequality shows that
V , and hence ω is bounded. Therefore, γ̇ and Ω̇ as
well as γ̇Ω are bounded. Moreover, ω̇ is bounded from
(20). It follows that ω, γ and Ω are uniformly continu-
ous and thus V̇ is uniformly continuous as well. From
Barbalat’s Lemma25 it follows that V̇ → 0. This im-
plies that ωs → 0 and Ωωt → 0 as t → ∞. Assume
now that Ω(0) �= 0 and that ωt → ω̄t �= 0. Since
ωs → 0 we then have that after a sufficiently long
time, Ω̇ ≈ k3|ω̄t|Ωk

1
2
1 (Ω) and the equilibrium Ω = 0 is

unstable. Hence, Ωωt �→ 0, a contradiction. It follows
that, necessarily, ωt → 0 as t→ ∞.
Assume now that ωs = Ωωt ≡ 0. It follows that

γ̇ = Ω̇ = 0 and from Eq. (20)

Jω̇ + ω×(Jω +AsIwsΩ) = 0 (21)

which, when expressed in the gimbal frame, becomes

J13ω̇g − J23ω
2
g = 0 (22a)

J23ω̇g + J13ω
2
g + IwsΩωg = 0 (22b)

J33ω̇g = 0 (22c)

From Eq. (22c), we get ω̇g = 0. From Eq. (22a) or
Eq. (22b), we conclude that ωg = 0. Thus, the largest
invariant set in {ω : V̇ (ω) = 0} is the set ω = 0.
Asymptotic stability follows from LaSalle’s theorem
and global asymptotic stability follows from the radial
unboundedness of the function V and the fact that
the previous analysis holds for all initial conditions
ω ∈ IR3.

Acceleration Steering Law

In the actual spacecraft the gimbal control input
is a torque (or gimbal acceleration) command, rather
than a gimbal velocity command. The derived velocity
command has to be implemented via an internal servo
control loop. A simple implementation of this idea is
to use, say

γ̈ = Kp(γ̇d − γ̇) (23)

where Kp > 0 and where γ̇d as in Proposition 3. This
(proportional) control law will ensure that the actual
gimbal velocity γ̇ approaches the desired command γ̇d,
as t → ∞. In practice Kp has to be sufficiently large
in order for the convergence to take place in a short
interval of time.



Numerical Examples
In this section we give some illustrative examples

of the control design methods for the angular veloc-
ity subsystem using both the linear and the nonlinear
analysis of the previous sections. Both examples ap-
plied the control laws developed earlier to the complete
equations of motion in Eqs. (1)-(4) using the accel-
eration steering law in Eq. (23). This was done in
order to compare each control law individually and
in relation to each other using a realistic evaluation
model. Table 1 summarizes the values the moments
of inertia and gimbal used in the simulations. These
values roughly correspond to the spacecraft simulator
described in Ref. 26. The controller gains and the
initial conditions are given in Table 2.
The first example corresponds to the LQR con-

trol design method which was developed from the
linearized angular velocity system. The results are
shown in Fig. 2. The weighting matrices Q and R
in (19) were chosen by trial and error to stabilize the
system quickly with suitable damping. Their values
are shown in Table 2. Figures 3 and 4 show the values
of the gimbal angle and wheel speed as well as their
rates.

Table 1 Moments of inertia values.

Symbol Value Units

IB
B


 15.303 3.0 4.0

3.0 13.224 2.0
4.0 2.0 19.903


 kgm2

Iws 0.0042 kgm2

Iwt, Iwg 0.0024 kgm2

Igs 0.0093 kgm2

Igt, Igg 0.0054 kgm2

Aso [−1, 0, 0]T −
Ato [0, 0.8161, 0.5779]T −
Ago [0, 0.5779,−0.8161]T −

The second example corresponds to the nonlinear
control law of Proposition 3. The function k1(Ω) was
chosen as k1(Ω) = µ/(1 + Ω2). The angular velocity
histories with the nonlinear control law are shown in
Fig. 5. The time history of γ̇ and Ω̇ are shown in
Fig. 6. The time histories of the gimbal angles and
the wheel speed velocity are shown in Fig. 7.
Notice that the nonlinear controller is more aggres-

sive resulting in larger values for the gimbal angle and
wheel speed. Since in a physical system the wheel and
the gimbal rate commands saturate, it is imperative
to modify the nonlinear control law so as to take into
account these saturation effects. This is left for future
investigation.
On the other hand, one may choose to use the

nonlinear controller only if the initial conditions be-
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Fig. 2 Numerical simulations with the LQR con-
trol law.
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Fig. 3 Time history of γ̇ and Ω̇ with the LQR
control law.

Table 2 Controller gains and initial conditions.

Symbol Linear Nonlinear Units
ω(0) [0.02, 0.01,−0.02]T [0.1, 0.1,−0.1]T rad/sec
γ(0) γo = 20 20 deg
γ̇(0) 0 0 deg
Ω(0) Ωo = 2× 103 2× 103 rpm
Q diag{1e4, 1e4, 1e4} − −
R diag{1e2, 1} − −
µ − 800 sec−1

k2 − 400 sec−1

k3 − 10 sec−
1
2

Kp 1 1 sec−1

come too large. After the trajectories reach a small
neighborhood of the origin (and within the region of
attraction of the linear controller), one can then switch
to the LQR controller, whose local performance can
be pre-assigned via the optimization criterion (19). In
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Fig. 5 Numerical simulations with the nonlinear
control law.

this sense, the linear controller achieves (local) perfor-
mance and stability, whereas the nonlinear controller
acts as a “safety net” to protect the system from large
initial conditions.
For comparison, in Fig. 8 we show the results from

the numerical simulations of the LQR with initial con-
ditions ω(0) = [0.1 0.1 −0.1]T . For these (large) initial
conditions, the LQR does not stabilize the nonlinear
system.
Finally, Fig. 9 shows a series of snapshots of a

spacecraft with one VSCMG undergoing a detumbling
maneuver using the nonlinear control law of Proposi-
tion 3. Note that, as expected, the final orientation of
the spacecraft is such that the spin axis of the VSCMG
is aligned with the total angular momentum vector,
which remains constant in inertial frame at all times.

Conclusions
In this paper, we have addressed the stabilization

problem of a rigid spacecraft with a single-gimbal
variable-speed control moment gyro (VSCMG). Since
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Fig. 6 Time history of γ̇ and Ω̇ with the nonlinear
control law.
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Fig. 7 Time history of γ and Ω with the nonlinear
control law.

no external control torques act on the system, re-
orientation of the spacecraft is achieved via momen-
tum transfer between the spacecraft platform and
the VSCMG. We showed that the complete attitude
equations are not linearly controllable. The angular
velocity equations are, nonetheless controllable. A
simple LQR controller was used to locally asymptot-
ically stabilize the angular velocity equations for an
arbitrary gimbal frame orientation. Abandoning the
restrictive assumptions made in the linear case we de-
veloped a control law for the nonlinear system which
ensures global asymptotic stability of the angular ve-
locity equations.
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